A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer
Authors
Abstract:
Methods routinely utilized for detection of phenylalanine in new-born blood consist of enzymatic assays, lacking sensitivity and HPLC assays which are expensive and time-consuming to conduct. We, here, report for the first time, the construction of a phenylalanine sensitive electrode, on the basis of a selective molecularly imprinted polymer, offering sensitivity, economy and ease of use for the measurement of phenylalanine .The sensor was constructed of a graphite-rod electrode which was coated by MIP embedded polymer base made from polyvinyl chloride and plasticizer mixture, dissolved in THF. At optimized conditions the electrode revealed a Nernstian response 29.73 ± 1.0 mV decade-1 in a concentration range of 1 × 10⁻⁸ to 1 × 10-4 M with detection limit of 5 × 10⁻⁹ M. The potential response of the electrode was constant in the pH range of 4.0–7.5. The electrode unfolded a response time of ~20 sec. The selectivity coefficient of the sensor towards a number of different amino acids with molecular similarities and some metal ions was evaluated. The sensor was successfully used for determination of phenylalanine in blood serum and the results were in good compatibility with HPLC method.
similar resources
Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin
A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...
full textHigh-density lipoprotein sensor based on molecularly imprinted polymer
Decreased blood level of high-density lipoprotein (HDL) is one of the essential criteria in diagnosing metabolic syndrome associated with the development of atherosclerosis and coronary heart disease. Herein, we report the synthesis of a molecularly imprinted polymer (MIP) that selectively binds HDL, namely, HDL-MIP, and thus serves as an artificial, biomimetic sensor layer. The optimized polym...
full textDevelopment of a Molecularly Imprinted Polymer-Based Sensor for the Electrochemical Determination of Triacetone Triperoxide (TATP)
The explosive triacetone triperoxide (TATP), which can be prepared from commercially readily available reagents following an easy synthetic procedure, is one of the most common components of improvised explosive devices (IEDs). Molecularly-imprinted polymer (MIP) electrochemical sensors have proved useful for the determination of different compounds in different matrices with the required sensi...
full textMolecularly Imprinted Polymers Based Electrochemical Sensor for 2,4-Dichlorophenol Determination
A molecularly imprinted polymers based electrochemical sensor was fabricated by electropolymerizing pyrrole on a Fe3O4 nanoparticle modified glassy carbon electrode. The sensor showed highly catalytic ability for the oxidation of 2,4-dichlorophenol (2,4-DCP). Square wave voltammetry was used for the determination of 2,4-DCP. The oxidation peak currents were proportional to the concentrations of...
full textMolecularly Imprinted Polymer-Carbon Nanotube based Cotinine sensor
A cotinine sensor based on the dc resistance of a polymer composite films is presented. The composite film comprises a cotinine selective molecularly imprinted polymer and carbon nanotube particles. This polymer film is deposited over a gold interdigitated electrode array to measure its electrical resistance. The electrical resistance of the imprinted polymer changes upon its selective binding ...
full textMy Resources
Journal title
volume 18 issue 1
pages 61- 71
publication date 2019-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023